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Abstract. We considera particle in a 2 dimensionalplane in a periodic potential
and a homogeneousmagneticfield perpendicularto theplane. Kubo‘s expression
for conductivityof theHall current is an integer.
Thisresult of Thouless,Kohomoto,Nightingaleand denNi/s is interpretedgeome-
trically.

1. THE EXPERIMENT OF V. KLITZING, DORDA AND PAPPER

in 1980 v. Klitzing, Dorda and Pepperpublished an article entitled <<New

Methodsfor High AccuracyDeterminationof the FineStructureConstantBased
on the Quantized Hall Resistance>>[1]. They measuredthe conductivity UH of
the Hall-current in the twodimensionalboundarylayer of a Silicon-Siliconoxide

transistorwith the magneticfield perpendicularto the layer. The magneticfield
had the orderof magnitude100Kilogaussand the temperaturewas about l.5°K.
In latter experiments[e.g.2], a11 was measuredas function of themagneticfield.

The qualitative behaviorof conductivity is representedby the graph in fig. 1.
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Fig. 1.

It showsthe characteristicflat pieces,the so calledplateauswhereconductivity

takesthe valuesaH = n a, n is an integeranda : = e
2/h (in atomicunitsme= e =

= h = 1, a = l/27r). The formula representsexperimentaldatawith the precision

108.
In somelaterexperimentsit was found that thereare smalerplateausat fractio-

nal valuesof a.

Thesamequalitativeresulthasbeenfound in othersystems.

The problem with the interpretationof this experimentalis twofold: Firstly,
how do theseintegervalued conductivitiescome aboutand secondly,why is the

result not sensitiveto dirt or defectin the lattice.

In the following we presenta geometricalreformulationof the work of Thou-
less,Kohmoto, Nightingale andden Nijs [2]. Relatedandadditionalmaterialcan

be foundin L3].

2. ONE ELECTRON IN A HOMOGENEOUS MAGNETIC AND ELECTRIC
FIELD

In this chapterwe shall discusstheSchrOdingeroperatorfor oneelectronmov-
ing in a planewith a homogeneousmagneticfield perpendicularto the planeand

a homogeneouselectric field in the plane. (We chooseB andE in the direction
of the 3 and 1 -axis respectively).It turns out that the use of gaugeinvariant
objects to formulatethis problemleadsto a very simple analysisand allows the
integration of Heisenbergsequation of motion for the position and velocity

operatorsin a straight forward manner[3]. In the following we shall identify
vectorsx E JR2and (x, 0) E JR3.

TheSchrOdingeroperatoris given (atomicunits) by
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H: = v
2—Ex,E electric field, x position in the 1 - 2 plane

O = p — eA velocity operatorin the 1 - 2 plane.

A electromagneticfield strength(B = rot A).

In a particulargaugeA = -~- B - x.

The operator H
0:= ~o2 has the integral of motion c:=x+u-b, b

= B/IB ~

2. c is the operator of the Landaucenter(We set the 3-componentto
zero). Its interpretationis madesimpleby thefollowing formula

iH
0t —ill

x(t):=e xe °=c+R(t)r.
coswt sinwt

R(t):= . ,w=IBI,
—sinwt coswt

r : = - b.

is the time zero velocity of the particle. The equationtells us the well known

fact that an electron in a homogeneousfield rotatesaroundthe Landaucenter
with the Larmor frequencyw = B . x(t) is the integralof the Heisenbergequa-
tion of motion and is the result of a straightforwardand simple computation
starting from the commutationrelations

[ao,Ilv]=—i(a-13B),(a,f3eIR
2),

[a c,13c] =—i(a -j3-b),

[a 0, ~3c] = 0.

Notice that the two nontrivial componentsof o do not commute;infact they

obey Heisenbergscommutationrelations. HenceH
0 is the Schrodingeroperator

of a harmonicoscillatorsay in the variable x v~multiplication operatorx, 02 =

d
= iB —.

dx

Even in the presenceof a homogeneouselectric field the Heisenbergequation

of motion fore ando canstill beintegrated[31;theyread

a ~ = i [H, ac] = i [H0. ad — i[Ex, ac] (a E JR
2)

=—i [Ex,ac]

=—i[E(c—v -b),ac]

= —E - a b = a D,D : = E - b
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and

= i [H
0, v] —i [Ex, UI

=B -u—E.

Bothequationscaneaselybe integrated,

c (t) = Di + c0

0(t) =R(t)v0+D.

Inserting these expressionsinto the definition of the operatorof the Landau

centerc yields the following formula for theposition operator:

7T

x(t)=(c0—D-b)—Rt———-—v0+Dt.
2w

The equation has the following interpretation:The electron circles around its

mean position which moves with uniform speedD perpendicularto E and B.

This situation differs qualitatively with the one without magnetic field, where

the velocity of the electrongrows linearly in time under the influence of the

electricfield.

To end this section we give the following heuristic argument for the Hall

conductivity: The current of non interacting electronsin spaceis given by the

expression/ = density. (mean velocity of one electron) and related to E by

Ohm’s law / = a11E. The meanvelocity is by the previousexpressionfor 0(t)

just the drift D. To computethe density of particles,we resort to the following

argument: c~and c~,play a role analogousto position and momentum. Hence

2ir
the unit in phasespacefor one electronis not h = 2ir but —h- dueto theCCR.

The density turns out to be thereciprocalif all electronsareput into theground-

state of H0 = ~ v
2 (harmonic oscillator) considered on functions of v~only;

otherwise we get for the density n — , where n denotesthe numberof har-

2ir

monic oscillator wave functions (Landaulevels)occupied.Putting this together

one getsthedesiredresultOH = n/2ir.

3. ONE ELECTRON IN A HOMOGENEOUS MAGNETIC FIELD AND A
PERIODIC POTENTIAL

In this chapterwe presentthe Bloch analysisfor a SchrOdingeroperatorwith
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a homogeneousmagneticfield and a periodicpotential.The results-althoughnot
new [4, 5] - havenotyet foundtheir way into textbooks.

1. The generalizedmomentum:The main point in the analysisis the existenceof
a generalizedmomentum operator~ which is defined by ~ : = B - c. From the

commutationrelationsof c onegets

[a~3~]=ia -~3~B(a,13E1R3,a
3=133=0)

[ap5j~v] =0.

Considernow theunitary groupgeneratedby ~,

T(a):=exp—ia~ (aEIR
2),

It statisfiestheWeyl commutationrelations

T(u)T(v)= T(u +v)~exp—(u -v~B) (u,UE&2)

T(u) and T(v) commuteif the flux of the magnetic field through the surface

spannedby u, v (u
3 = 03 = 0) is 2ir timesaninteger.

Sometimesit is usefull to havean explizit versionof T(u). In the gaugepre-
viously mentioned,where

A = — B - x, onegets

2

T(u) = e’~’

= e_~1~Ae~~’P.

To get this results we used the statements:If [A, B] commuteswith A and B

then eA+B = eAeB e 1121.4,B] and [up, uA] = o (u E 1R
2). For a general gauge

T(u) has always the structure translation operatortimes multiplicative phase.
Thisfact will be crucial in the following Blochwave analysis.

2. Translation symmetries of the Schrodingeroperator: Consider the SchrO-

dingeroperatorfor one electron in a homogeneousmagneticfield anda periodic

potential V,

V(x+a)= V(x) (aELCIR2,xEIR2).

L is alattice generatedby l~and
V shallbe a continuousrealvaluedboundedfunction,
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H: = — u
2 + V, D(H) = C

1~(JR
2).

2

H is essentiallyselfadjoint [6]. (Of coursethe conditionson V arenotoptimal)

Due to the generalstructureof T(u) just mentionedabove,T(u) commuteswith

Hifu EL,

[H,T(u)]=0 (uEL).

Since the flux through a unit cell of L is generallynot an integermultiple of
27r two generalized translationsT(u) and T(u) (u, o EL) will not commute.
Howeverthe following statementholds:

LEMMA: Let H and T(u) be the operatorspreviously definedand let M be a
sublatticeof L generatedby the vectorsm

1,m2. Then thefollowing statement

holds: If the flux ~ : = 11 - 12 . B is a rational numbertimes 2ir then the set of
operators{H, T(u) u E M} is abelianfor M properly chosen.

Weshall call M the magneticlattice.

Proof: By assumption~ = 2ir , p, q EZ. Choosefor examplem1 = 11, m2=

= q12. Now the statementis clearly correct.

3. The Bloch analysisof the Hilbert spaceof states:In this section we describe

a unitary mapping U of the spaceotstatesH= L
2(1R2,dx) onto a direct integral

of Hilbert spaces

(d2k
= I L,~(C,dx),

) I C~’

where L~(C,dx) (k EC*) is the spaceof square integrablefunctions over the
unit cell C : = 1R2/M and the integral rangesover C~’: = 1R2/M*. (M* denotes

the dual lattice of M). Theresult is summarizedin the following

LEMMA: ThemappingU definedby

U :f-+f~: = e1~T(m)f (fE S(1R2),k E 1R2)
m EM

extendsby continuity to a unitarymapofH onto H.



ON THE QUANTUM HALL EFFECT 19

The proof is quite simple and we shall give two main piecesof it: i) Isometry
of U follows from the following argument for which we use the gaugeA =

= — B - x:
2

~ d2k _______

(Uf,Uf)= I e~m_m’))d2xe~~m_m)f(x+m)f(x+m’)
) C~

m.m

_______ d2k
= ~ fd2x et m~m’)f(x+ m)f(x + m’) L5 C*I e~(m-rn)

= ~ fd2xjf(x+m)12
m

= (f,f).

Since f is a Schwartz test function the orderof integrationscanbe changed.

ii) Theadjointand inverseof U is givenby theexpression

I d
2k

U~:f —~f(x):= I — eikm(T(_m)fa)(x) (x—mEC,mEM).j C~
Ce

In order to be well definedwe have to identify fk(x) (x E C, k EC*) with its

periodic extensionin the variable x E JR2 and to assumeregularity in k andx.

To checkthat U* definedby the equationaboveis the adjoint of U it is usefull
to note that A(x)m =A(x +m)rn (m EIR2). Notice that fk(x) = Uf(x) (fE

E S(IR2) has the following periodicity properties:

D fk+rn* )=fk~ ,kEJR2,m* EM*)
ii) (T(m)fk) (x) = ei~~mfk(x)(x, k E JR2.m EM).

In the special gaugementioned previously the secondperiodicity property
takesthe form

ii’) fk(x + m) = e11”~eimA~fk(x).

ii) showsthatfk is a generalizedBloch function.

4. The Blochanalysisof the SchrOdingeroperator:The directintegraldecomposi-
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tion of the last section is well adaptedto the analysisof H; to explain that,we

introducethe operatorvalued function H(k) actingon a domainDk C defined

as follows. Considerthe functions

Dk: = {fIfEH~.(lR
2), T(m)f= ei~5~mf,m EM}.

and their restrictionsto C

D~:={g~g=f~~,fEDk}.

Manifestly the functions satisfy the boundarycondition ii) mentionedin the

last section.The operatorH(k) hasby definition the samesymbol as H and the

domainDk:

H(k):= ~o2+ V, D(H)=DkcLk (kEJR2).

It hasthe properties:

THEOREM: H(k) (defined above) is selfad/oint, realanalytic and periodic in k

H(k+m)~H(k) (kEIR2,mEM).

Furthermoreit is related to H by

I d2k
(*) UHU’= I —H(k),

IC*I
C

whereU denotestheunitary mappingintroducedin theprevioussections.

Proof: Since V is a boundedperturbationof the selfadjointoperator v2,H(k)

ist selfadjoint with the samedomain.Analyticity is easyly seenby the following
argument: Consider the unitary operatorvalued realanalyticfunction B(k) : =

= eU~X. Then B(k) H(k) B(k)~= 1 ~ + k)2 + V(x) with domain Dk
0 is

manifestly analytic in k. Periodicity follows from periodicity of the domain
of definition Dk. To prove the last part of the statementit is enoughto show
equality (*) on S(1R

2) since this is a core for H. Let f be a Schwartztest func-
tion, then

(d2k
(Hf)(x) =H I— ei~~m(T(_m)fk)(x),x—m EC

JIC*I mEM



ON THEQUANTUM HALL EFFECT 21

(d2k

= I
J IC*I

4. GEOMETRICAL INTERPRETATION OF THE HALL CONDUCTIVITY

1. Linear responsetheory yields an expressionfor the Hall conductivity which
is Kubo’s formula

i ‘~ ( df’ df’
OH = — ~ k, k dk

1 - dk2
2ir .—~J dk dk

l c~ 1 2

n denotesthe <<numberof bandsoccupied>>,~ is the i-th eigenfunctionofH(k),

andC* is the unit cell ofM*.
There is only a formal argumentwhich supportsthe validity of this formula.

It would be very nice to havea proof. However this is difficult. Thereis also a
mathematicalproblem with theintegrandin the aboveexpressionfor

0H• Implici-

tly it is assumed,that there exist sufficiently regulareigenfunctions~k’~ k E C*.
Howeverthis is in generalnot correct,not even locally [7]. Thereforeit is very

useful! and nice to havean expressionfor the conductivity which only involves
the projector P(k) onto the eigenstatesfk’ since P(k) is real analytic (k E K2)

provided the n -th eigenvalueis well separatedfrom the n + 1 st one. This will
be alwaysassumedin the following:

Assumption: If k E C* then E~+

1(k) > E~(k),where E~(k)denotesthe n-the
eigenvalueof H(k), countedfrom below.

LEMMA: Let H(k) be the SchrOdinger operator as defined in the preceeding
chapter.Let the n first eigenvaluesofH(k) benon degeneratefor k in a neighbor-
hood N of k0. Let f~be an analytic choice ofeigenvectorswith total projector

P(k). Thenthefollowing identity holds

(df~,df~)= TracedPP dP.

We shall not give a proofof the statementbecauseit involvesstraightforward
computation.

2. The Hilbert spacei7 introducedin the previos chapterhas the structureof a
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Hubert bundle over the torus T (T is the same asC* up to the boundary;for

geometricalconceptswe refer to appendixC of ref. [8]). On 1? thereis a natural

unitary paralleltransportmappingDk ontoDk,

P(k,k’):g~__*h~(x):=expi(k_k’)xg~(x).

The correspondingconnectionturns out to be D = V/k— ix. It providesthetool
to constructaninducedconnectionon vectorbundlesover T.

3. Considerthe projectorvalued functionP(k),k E T, onto the first n eigenfunc-

tions of H(k). Let B?Z be the C’~- vectorbundleoverT, wherethe fiber on top
of k E T is just the rangeof P(k). On B’1 thereis thefollowing naturalconnection,
definedon local coordinates(sections)‘~fi}~=by

V (f1) : = ~ wUff

= (fi Df’).

The curvature is given by the general formula f~= dw — w - w. Since the

basisT is 2-dimensionalonly the first term contributes,hence

�2=dw, ~fi)~ç~iJfJ ~‘=dw’1.

4. On the torustherearecanonicallyconstructedclosedforms, the Chernclasses.
The first Chernclassis definedby

C
1 : = — Trace fi =

2iri

Theintegralof C1 overthe torus is an integer.
Now we want to show that C1 is equalsthe integrand in the Kubo formula

if the fr,’ are the first n eigenfunctionsof H(k). By definition W’ is locally given
by

= d (f~Df’).

= (df’, df’).

To get the last identity we used the invariance of W’ under the substitution

fk(x) —+ ei~~xfk(x)and the identity D = e~d ~ HenceTrace~ equals
0H as

given at the beginningof this section.
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Of coursethere is also a muchmore elementaryderivationof the result about

quantizationof conductivity.This is the original argumentof Thouless,Kohmoto,
Nightingale and den Nijs [2]. It runs roughly as follows: Let f, (i = 1, . . . , n) be

the first n eigenfunctionsof H(k) definedon JR2(not on ~ f~,andf~.differ by
a phase if k and k’ are two elementsof6C* identified as elementsof the torus.

Summing up the phasesalong the boundaryof C* gives necessarily27ri times

an integer. This is the conductivity. The transition from the surfaceintegral in

the Kubo formula to the line integral overC* is madepossibleby the fact that

the first Chern class-considerdas a two form an 1R2-isnot only closedbut exact.

HenceStokestheoremcanbe applied.
The topological quantumnumbersfound by Thouless,Kohmoto, Nightingale

and den Nijs turn out to be the only quantizedquantities associatedwith the

energybands[101. It is remarkablethat they turn out to be themeasurablecon-

ductivities.
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