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Abstract. We consider a particle in a 2 dimensional plane in a periodic potential
and a homogeneous magnetic field perpendicular to the plane. Kubo’s expression
for conductivity of the Hall current is an integer.

This result of Thouless, Kohomoto, Nightingale and den Nijs is interpreted geome-
trically.

1. THE EXPERIMENT OF V. KLITZING, DORDA AND PAPPER

In 1980 v. Klitzing, Dorda and Pepper published an article entitled «New
Methods for High Accuracy Determination of the Fine Structure Constant Based
on the Quantized Hall Resistance» [1]. They measured the conductivity o, of
the Hall-current in the twodimensional boundary layer of a Silicon-Siliconoxide
transistor with the magnetic field perpendicular to the layer. The magnetic field
had the order of magnitude 100 Kilogauss and the temperature was about 1.5°K.
In latter experiments [e.g.2], 0, was measured as function of the magnetic field.
The qualitative behavior of conductivity is represented by the graph in fig. 1.
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Fig. 1.

It shows the characteristic flat pieces, the so called plateaus where conductivity
takes the values 0, =no, n is anintegerand 0 : = e%/h (in atomic units m,=e=
=h=1, 0 = 1/27). The formula represents experimental data with the precision
1:108

In some later experiments it was found that there are smaler plateaus at fractio-
nal values of o.

The same qualitative result has been found in other systems.

The problem with the interpretation of this experimental is twofold: Firstly,
how do these integer valued conductivities come about and secondly, why is the
result not sensitive to dirt or defect in the lattice.

In the following we present a geometrical reformulation of the work of Thou-
less, Kohmoto, Nightingale and den Nijs {2]. Related and additional material can
be found in [3].

2. ONE ELECTRON IN A HOMOGENEOUS MAGNETIC AND ELECTRIC
FIELD

In this chapter we shall discuss the Schrodinger operator for one electron mov-
ing in a plane with a homogeneous magnetic field perpendicular to the plane and
a homogeneous electric field in the plane. (We choose B and E in the direction
of the 3 and 1-axis respectively). It turns out that the use of gauge invariant
objects to formulate this problem leads to a very simple analysis and allows the
integration of Heisenbergs equation of motion for the position and velocity
operators in a straight forward manner [3]. In the following we shall identify
vectors x € IR? and (x, 0) € R3.

The Schrodinger operator is given (atomic units) by
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1
H: = £} v2— Ex, E electric field, x position in the 1 - 2 plane

v = p —eA velocity operator in the 1 - 2 plane.
A electromagnetic field strength (B = rot 4).

1
In a particular gauge A = ) B - x.

1
The operator H: = 5 v? has the integral of motion c:=x +v-b, b:=

=B/|B |2. ¢ is the operator of the Landau center (We set the 3-component to
zero). Its interpretation is made simple by the following formula

iH t —iH,t
x(H:i=e Oxe Ty R
cos wt sin wt
R : = ) ,w=|B],
— sin wt cos wt
r::vo—b.

v, is the time zero velocity of the particle. The equation tells us the well known
fact that an electron in a homogeneous field rotates around the Landau center
with the Larmor frequency w = |B | x(t) is the integral of the Heisenberg equa-
tion of motion and is the result of a straightforward and simple computation
starting from the commutation relations

[av,ﬁv]:_i(a*B'B),(a,ﬁele),
[(XC',BC]:“i(CY‘B'b),
[av,Bc]=0.

Notice that the two nontrivial components of v do not commute;in fact they
obey Heisenbergs commutation relations. Hence Ho is the Schrodinger operator

of a harmonic oscillator say in the variable x v, multiplication operator x, v, =

d
=iB —|.
dx

Even in the presence of a homogeneous electric field the Heisenberg equation
of motion for ¢ and v can still be integrated [3]; they read

acé=ilH ac]=1i[H, ac]—i[Ex,ac] (@ €R?)
=—i [Ex, ac}
=—il[E(c—v-b),ac)
=—F-a-b=oa-D,D:=F-b
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and
U=1[Hyv]—i[Ex,v]
=B -v—E.
Both equations can easely be integrated,
c(t) =Dt + Ieh
v({t) =R v, +D.

Inserting these expressions into the definition of the operator of the Landau
center ¢ yields the following formula for the position operator:

T
x(t)=(c,—D Ab)—R<t— —_

2w

v0+Dt.

The equation has the following interpretation: The electron circles around its
mean position which moves with uniform speed D perpendicular to £ and B.
This situation differs qualitatively with the one without magnetic field, where
the velocity of the electron grows linearly in time under the influence of the
electric field. :

To end this section we give the following heuristic argument for the Hall
conductivity: The current of non interacting electrons in space is given by the
expression j = density. (mean velocity of one electron) and related to £ by
Ohm’s law j = 04E. The mean velocity is by the previous expression for v(r)
just the drift D. To compute the density of particles, we resort to the following
argument: ¢ and c, play a role analogous to position and momentum. Hence

9
the unit in phase space for one electron is not # = 27 but ;TW due to the CCR.
The density turns out to be the reciprocal if all electrons are put into the ground-

1
state of HO: — v? (harmonic oscillator) considered on functions of v, only;

B
otherwise we get for the density n - — , where n denotes the number of har-
™

monic oscillator wave functions (Landaulevels) occupied. Putting this together
one gets the desired result 0, = n/2m.

3. ONE ELECTRON IN A HOMOGENEOUS MAGNETIC FIELD AND A
PERIODIC POTENTIAL

In this chapter we present the Bloch analysis for a Schrodinger operator with
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a homogeneous magnetic field and a periodic potential. The results-although not
new [4, 5] - have not yet found their way into textbooks.

1. The generalized momentum: The main point in the analysis is the existence of
a generalized momentum operator p which is defined by p : =B - ¢. From the
commutation relations of ¢ one gets

[ap, BP) =ic ~B- B (a,BER, oy =f, = 0)
[ap, Bv] = 0.

Consider now the unitary group generated by P,
T@):=exp—iap (a€R?),

It statisfies the Weyl commutation relations

i
T(u) T(v) = T(u + v) - exp > (u-v-B) (uveR?

T(u) and T(v) commute if the flux of the magnetic field through the surface
spanned by u, v (u3 =V, = 0) is 27 times an integer.

Sometimes it is usefull to have an explizit version of 7' (u). In the gauge pre-
viously mentioned, where

1
A=—2—B~x,onegets

T(u) =e . gl

— g [uA o—iup

To get this results we used the statements: If {4, B] commutes with 4 and B
then eA4*B =eAeBV2I4.Bl 3nd [up,ud]=o0 (u €IR?). For a general gauge
T(u) has always the structure translation operator times multiplicative phase.

This fact will be crucial in the following Bloch wave analysis.

2. Translation symmetries of the Schrédinger operator: Consider the Schré-
dinger operator for one electron in a2 homogeneous magnetic field and a periodic
potential V,

Vix+a)=V(x) (@l cRyxecR?).

L is a lattice generated by /, and Ly
V shall be a continuous realvalued bounded function,
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1
Hi= —v?+ ¥, DU = CF(R?).

H is essentially selfadjoint [6]. (Of course the conditions on V are not optimal)
Due to the general structure of T'(u) just mentioned above, 7(u#) commutes with
Hifuel,

(H, Tw)]=0 (mel).

Since the flux through a unit cell of L is generally not an integer multiple of
27 two generalized translations T'(u¥) and T(v) (u,v € L) will not commute.
However the following statement holds:

LEMMA: Let H and T(u) be the operators previously defined and let M be a
sublattice of L generated by the vectors m, m,. Then the following statement
holds: If the flux ¢ :=1, -1, B is a rational number times 27 then the set of
operators {H, T(u) | u €M} is abelian for M properly chosen.

We shall call M the magnetic lattice.

p

Proof: By assumption ¢ = 27 — , p, g € Z. Choose for example m, =1, m, =
q

= ql,. Now the statement is clearly correct.

3. The Bloch analysis of the Hilbert space of states: In this section we describe

a unitary mapping U of the space of states H = L?(IR?, dx) onto a direct integral
of Hilbert spaces

N a2k
H:=|— LXC, dx),
|

where L,f(C, dx) (k €C*) is the space of square integrable functions over the
unit cell C:=IR%M and the integral ranges over C* : = RYM*. (M* denotes
the dual lattice of M). The result is summarized in the following

LEMMA: The mapping U defined by

Uif>fi= Y e ™ Temf (fESRY,k ER?)

meM

extends by continuity to a unitary map of H onto H.
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The proof is quite simple and we shall give two main pieces of it: i) Isometry
of U follows from the following argument for which we use the gauge A =

1
= — B ~x:
2

a2k , _ o
r,up) = Y etklmemd | q2x lAmmm) FGm) £(x 4+ m)
e 171 c

m.m'

dk

eik(m—m')

Z szxeiA(’”_’”')f()ch)f(x+m') f|

m,m’' c Jox C*l

S fdzx{f(x +m)|?

m
=,
Since f is a Schwartz test function the order of integrations can be changed.
il) The adjoint and inverse of U is given by the expression
d%k

U*:fk——+f(x)::f |—CT|e”‘"’(T(—m)fk)(x) (x—melC, meM).
C*

In order to be well defined we have to identify £, (x) (x € C, k € C*) with its
periodic extension in the variable x € R? and to assume regularity in k and x.
To check that U* defined by the equation above is the adjoint of U it is usefull
to note that A(xX)m = A(x + m)m (m € R?). Notice that L) =Uf(x) (fe
€ S(IR?) has the following periodicity properties:

D) fi () =1 (x, k ERE, m* eM*)
ii) (T(n)f,) (x) =e™ f(x) (x,k eR?, m €M).

In the special gauge mentioned previously the second periodicity property
takes the form

i) f(x +m)=ekmeimANf (x).

ii) shows that fk is a generalized Bloch function.

4. The Bloch analysis of the Schrodinger operator: The direct integral decomposi-
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tion of the last section is well adapted to the analysis of H; to explain that, we
introduce the operator valued function H (k) acting on a domain D, cC Lk2 defined
as follows. Consider the functions

Dy :={f|f€HL(RY), T(m)f=c*mf meM).

loc

and their restrictions to C
D .:={glg=f

Manifestly the functions satisfy the boundary condition ii) mentioned in the
last section. The operator H (k) has by definition the same symbol as H and the
domain D :

1
H(k) : = ?v2+ V,D(H)=D,CL, (keR?).

It has the properties:

THEOREM: H(k) (defined above) is selfadjoint, realanalytic and periodic in k
Hk +m)=H(k) (k€eR:meM).

FEurthermore it is related to H by

_ d?k
) UHU '= H(k),
where U denotes the unitary mapping introduced in the previous sections.

1
Proof: Since V is a bounded perturbation of the selfadjoint operator 5 vl H(k)

ist selfadjoint with the same domain. Analyticity is easyly seen by the following
argument: Consider the unitary operator valued realanalytic function B(k) : =

. 1 ,
=e** Then B(k) H(k) B(k)™'= 3 (v+k)?+ V(x) with domain D, _, is

manifestly analytic in k. Periodicity follows from periodicity of the domain
of definition D,. To prove the last part of the statement it is enough to show
equality (*) on S(IR2) since this is a core for H. Let f be a Schwartz test func-
tion, then

d2k
(Hf)(x) :Hj— e (T(—m)f)x), x—meC
|¢ mem
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2k
= | —— e (T(—m) H(k) £,) (x).
| C*|

4. GEOMETRICAL INTERPRETATION OF THE HALL CONDUCTIVITY

1. Linear response theory yields an expression for the Hall conductivity which
is Kubo’s formula

P (df" df")

o, = — — k, — k|dk, -dk

Ho2n ) \dk, 7 dk, b
C*

n denotes the «number of bands occupiedy, }jc’ is the i-th eigenfunction of H(k),
and C¥* is the unit cell of M *.

There is only a formal argument which supports the validity of this formula.
It would be very nice to have a proof. However this is difficult. There is also a
mathematical problem with the integrand in the above expression for o,,. Implici-
tly it is assumed, that there exist sufficiently regular eigenfunctions f/, k € C*.
However this is in general not correct, not even locally [7]. Therefore it is very
usefull and nice to have an expression for the conductivity which only involves
the projector P(k) onto the eigenstates fk’ since P(k) is real analytic (k € R?)
provided the n-th eigenvalue is well separated from the n + 1 st one. This will
be always assumed in the following:

Assumption: If k € C* then En+1(k) >E”(k), where En(k) denotes the n-the
eigenvalue of H(k), counted from below.

LEMMA: Let H(k) be the Schrodinger operator as defined in the preceeding
chapter. Let the n first eigenvalues of H(k) be non degenerate for k in a neighbor-
hood N of kO. Let f}c’ be an analytic choice of eigenvectors with total projector
P(k). Then the following identity holds

Y (f',df") = Trace dP P dP.

i=1

We shall not give a proof of the statement because it involves straightforward
computation.

2. The Hilbert space I introduced in the previos chapter has the structure of a
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Hilbert bundle over the torus T (T is the same as C* up to the boundary; for
geometrical concepts we refer to appendix C of ref. [8]). On H there is a natural
unitary parallel transport mapping D, onto D, .,

Pk, k) 18— h(x) :=expi(k—k')x- g (x).

The corresponding connection turns out to be D =V, —ix. It provides the tool
to construct an induced connection on vector bundles over 7.

3. Consider the projector valued function P(k), k € T, onto the first n eigenfunc-
tions of H(k). Let B” be the C" - vector bundle over T, where the fiber on top
of k € T is just the range of P(k). On B" there is the following natural connection,
defined on local coordinates (sections) { f;}7_ , by

V(f‘):=zwiff".
7

W =(fiDfY).

The curvature is given by the general formula £ = dw — w -~ w. Since the
basis T is 2-dimensional only the first term contributes, hence

Q=dw, Q)= Z QU fi Qi =dwi.
7

4. On the torus there are canonically constructed closed forms, the Chern classes.
The first Chern class is defined by

1 n
C, := — Trace (: Q“).
! 2mi ;

The integral of C, over the torus is an integer.
Now we want to show that C, is equals the integrand in the Kubo formula
if the £,/ are the first n eigenfunctions of H(k). By definition Q7 is locally given

by
Qi =d(f'DfY.
=(dff,df%.
To get the last identity we used the invariance of Q7 under the substitution

f,(x) — e™** £ (x) and the identity D = e’**d ¢~™* Hence Trace §2 equals 0, as
given at the beginning of this section.
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Of course there is also a much more elementary derivation of the result about
quantization of conductivity. This is the original argument of Thouless, Kohmoto,
Nightingale and den Nijs [2]. It runs roughly as follows: Letfki (i=1,...,n)be
the first n eigenfunctions of H(k) defined on R2 (not on 7). f;c and fk differ by
a phase if k and k' are two elements of C* identified as elements of the torus.
Summing up the phases along the boundary of C* gives necessarily 2mi times
an integer. This is the conductivity. The transition from the surface integral in
the Kubo formula to the line integral over C* is made possible by the fact that
the first Chern class-considerd as a two form an IR%-is not only closed but exact.
Hence Stokes theorem can be applied.

The topological quantum numbers found by Thouless, Kohmoto, Nightingale
and den Nijs turn out to be the only quantized quantities associated with the
energy bands [10]. It is remarkable that they turn out to be the measurable con-
ductivities.
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